Record Details

Calibración Basada en Medidas para Modelos de Trazado de Rayos en 3D para Ambientes Exteriores Urbanos andinos

Sistemas & Telemática

View Archive Info
 
 
Field Value
 
Title Calibración Basada en Medidas para Modelos de Trazado de Rayos en 3D para Ambientes Exteriores Urbanos andinos
Measures based calibration of 3D ray-tracing models in Andean outdoor environments
 
Creator Navarro Cadavid, Andrés
Guevara Ibarra, Dinael
Africano, María Victoria
 
Subject Ingeniería Electrónica; Telecomunicaciones
Calibración; pérdidas de propagación; propagación; trazado de rayos.
Path loss; calibration; propagation; ray-tracing.
 
Description En este artículo se investiga el efecto que produce la optimización de los valores de permitividad para calles, paredes y techos de edificios, con relación a la precisión en la estimación de las pérdidas de propagación en un entorno exterior andino utilizando la técnica de trazado de rayos en 3D.Para obtener un modelo viable del escenario tridimensional, es generalizado tomar los valores de sus propiedades desde investigaciones realizadas por otros autores, en donde se caracterizan materiales típicos de otras ciudades, y a menudo la banda de frecuencias de operación no corresponde con la banda de frecuencias utilizadas en la caracterización. Para analizar la dependencia del valor de la pérdida de camino con respecto a la permitividad de los materiales, estimamos las pérdidas de propagación para diferentes valores de permitividad en los materiales y calculamos las estadísticas de error con respecto a medidas realizadas en el escenario COST de Cali (Colombia), típico de la región andina. Finalmente, optimizamos los valores de la permitividad y obtenemos un modelo del ambiente tridimensional que mejora el desempeño del trazado de rayos en la estimación de las pérdidas de propagación.
Due to the complexity of a real situation, estimation of path loss using the ray-tracing method usually assumes one or three large classes of homogeneous materials to represent the building walls, building roofs and street floors in order to have a viable model of the 3D environment. However, in a real case, an outdoor environment consists of many buildings and streets made of heterogeneous materials. Additionally, the characterizations of these classes of materials are usually taken from research of other authors with specific materials on site and often not done for the frequency band of operation. We analyze the behavior of the statistical variation of standard deviation, correlation coefficient and the average error between the values of estimated and measured path loss data when considering various values of permittivity of these three classes. Finally, we adjust the values of permittivity, obtaining a reasonable improvement of ray tracing to estimate the path-loss.
 
Publisher Facultad de Ingeniería - Universidad Icesi
 
Date 2012-06-30
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Article
Articulo
 
Format application/pdf
 
Identifier http://www.icesi.edu.co/revistas/index.php/sistemas_telematica/article/view/1195
10.18046/syt.v10i21.1195
 
Source Sistemas & Telemática; Vol 10, No 21 (2012); 43-63
Sistemas & Telemática; Vol 10, No 21 (2012); 43-63
1692-5238
 
Language spa
 
Relation http://www.icesi.edu.co/revistas/index.php/sistemas_telematica/article/view/1195/1646
/*ref*/Fugen T., Maurer J., Kaiser T., & Wiesbeck W. (2006). Capability of 3-D ray tracing for defining parameter sets for the specification of future mobile communications systems. IEEE Transactions on Antennas and Propagation, 54, 3125–3137
/*ref*/Ng, K.H., Tameh, E., Doufexi, A., Hunulumbure, M. & Nix, A. (2007). Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data. IEEE Transactions on Vehicular Technology, 56, 1019–1032
/*ref*/Stavrou, S. & Saunders, S.R. (2003, Marzo-Abril). Review of constitutive parameters of building materials. Proceedings of the 12th International Conference on Antennas and Propagation (ICAP ’03), Exeter, UK, [Vol. 1], (pp. 211–215). Londres, UK: IEEE
/*ref*/Athanasiadou, G.E. & Nix, A.R. (2000). Investigation into the Sensitivity of the Power Predictions of a Microcellular Ray Tracing Propagation Model. IEEE Transactions on Vehicular Technology, 49, 1140–1151
/*ref*/Rautiainen T., Wolfle G., & Hoppe, R. (2000). Verifying path loss and delay spread predictions of a 3D Ray tracing propagation model in urban environment. IEEE Transactions on Vehicular Technology, 49, 1140–1151
/*ref*/Iskander, M.F. & Yun Z. (2002). Propagation prediction models for wireless communication systems. IEEE Transactions on Microwave Theory and Techniques, 50(3), 662–673
/*ref*/Rappaport, T. (1996). Wireless Communications: Principles and Practice. Englewood Cliffs, NJ: Prentice Hall
/*ref*/Kim, K., Medouri, A., Sarkar, T.K., Ji, Z. & Salazar-Palma, M. (2003). A survey of various propagation models for mobile communication. IEEE Antennas and Propagation Magazine, 45(3), 51–82
/*ref*/Whinnery, J., Ramo, S. & van Duzer, T. (1994). Fields and Waves in Communication Electronics. Hoboken, NJ: John Wiley & Sons
/*ref*/Luebbers, R.J. (1989). A heuristic UTD slope diffraction coefficient for roughlossy wedges. IEEE Transactions on Antennas and Propagation, 37(2), 206–211
/*ref*/Chamberlin, K.A. & Luebbers, R.J. (1982). An Evaluation of Longley-Rice and GTD Propagation Models. Transactions on Antennas and Propagation, 30(6), 1093-1098
/*ref*/Valenzuela, R.A., Fortune, S. & Ling, J. (1998). Indoor propagation prediction accuracy and speed versus number of reflections in image-based3-D ray-tracing. En Proceedings 48th IEEE Vehicular Technology Conference, Ottawa, Canada (pp. 539–543). Piscataway, NJ: IEEE
/*ref*/Kouyoumjian, R.G. & Pathak, P.H. (1974). A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proceedings of the IEEE, 62(11), 1448–1461
/*ref*/Luebbers, R.J. (1984). Finite conductivity uniform gtd versus knife edge diffraction in prediction of propagation path loss. IEEE Transactions on Antennas and Propagation, 32(1), 70–76.
/*ref*/Luebbers, R.J. (1989). A heuristic UTD slope diffraction coefficient for roughlossy wedges. IEEE Transactions on Antennas and Propagation, 37(2), 206–211
/*ref*/Anantha, V., Stratis, G., & Taflove, A. (1997). Numerical calculation of diffraction coefficients of generic conducting and dielectric wedges using fdtd. IEEE Transactions on Antennas and Propagation, 45(10), 1525–1529
/*ref*/Burr, A., Czink, N., Debbah, M., Degli-Esposti, V., Hofstetter, H., Kyosti, P., Laurenson, D., Matz, G., Molisch, A.F., Oestges, C., Almers, P., Bonek, E. & Ozcelik, H. (2007). Survey of channel and radio propagation models for wireless MIMO systems. EURASIP Journal on Wireless Communications and Networking, 2007(1), 1–19
/*ref*/Heddergott, R., Steinbauer, M., Molisch, A. F., Asplund, H. & Zwick, T. (2006). The cost 259 directional channel model–part I: Overview and methodology. IEEE Transactions on Wireless Communications, 5(12), 3421–3433
/*ref*/Fischer, C., Zwick, T., & Wiesbeck, W (2002). A stochastic multipath channel model including path directions for indoor environments. IEEE journal on Selected Areas in Communications, 20(6), 1178–1192
/*ref*/Luebbers, R.J. (1988). Comparison of lossy wedge diffraction coefficients with application to mixed path propagation loss prediction. IEEE Transactions on Antennas and Propagation, 36, 1031–1034
/*ref*/Gil, F., Claro, A.R., Ferreira, J.M., Pardelinha, C. & Correia, L.M. (2001). A 3D interpolation method for base-station-antenna radiation patterns. IEEE Antennas and Propagation Magazine, 43(2), 132–137
/*ref*/Liu, T., Li, H., Chen, C & Lin, H. (2000). Applicability of ray-tracing technique for the prediction of outdoor channel characteristics. IEEE Transactions on Vehicular Technology, 49(6), 2336–2349
/*ref*/Bultitude, R.J.C. (2002). Estimating frequency correlation functions from propagation measurements on fading radio channels: a critical review. IEEE Journal on Selected Areas in Communications, 20(6), 1133– 1143
/*ref*/Lee, W.C.Y. (1985). Estimate of local average power of a mobile radio signal. IEEE Transactions on Vehicular Technology, 34(1), 22–27
/*ref*/Navarro A., Guevara D. (2010). Applicability of game engine for ray Tracing Techniques in a Complex Urban Environment. En Proceedings, 72nd IEEE Vehicular Technology Conference, Ottawa, Canada (pp. 539–543). Piscataway, NJ: IEEE
/*ref*/Navarro A., & Guevara, D. (2010). Using Game Engines in Ray Tracing Physics. En Proceedings of IEEE Latin American Conference on Communications (LATINCOM), Bogotá, Colombia (pp. 1-6). doi: 10.1109/LATINCOM.2010.5641119
/*ref*/Ling H., Chou R. & Lee S. (1989). Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity. IEEE Transactions on Antennas and Propagation, 37, 194–205
 
Coverage World
World